Read by QxMD icon Read

Oxygenic photosynthesis: EPR study of photosynthetic electron transport and oxygen-exchange, an overview

Alexander N Tikhonov, Witold K Subczynski
Cell Biochemistry and Biophysics 2018 November 20
In this review, we consider the applications of electron paramagnetic resonance (EPR) methods to the study of the relationships between the electron transport and oxygen-exchange processes in photosynthetic systems of oxygenic type. One of the purposes of this article is to encourage scientists to use the advantageous EPR oximetry approaches to study oxygen-related electron transport processes in photosynthetic systems. The structural organization of the photosynthetic electron transfer chain and the EPR approaches to the measurements of molecular oxygen (O2 ) with O2 -sensitive species (nitroxide spin labels and solid paramagnetic particles) are briefly reviewed. In solution, the collision of O2 with spin probes causes the broadening of their EPR spectra and the reduction of their spin-lattice relaxation times. Based on these effects, tools for measuring O2 concentration and O2 diffusion in biological systems have been developed. These methods, named "spin-label oximetry," include not only nitroxide spin labels, but also other stable-free radicals with narrow EPR lines, as well as particulate probes with EPR spectra sensitive to molecular oxygen (lithium phthalocyanine, coals, and India ink). Applications of EPR approaches for measuring O2 evolution and consumption are illustrated using examples of photosynthetic systems of oxygenic type, chloroplasts in situ (green leaves), and cyanobacteria.


You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"