Add like
Add dislike
Add to saved papers

Time-Compressed Speech Identification Is Predicted by Auditory Neural Processing, Perceptuomotor Speed, and Executive Functioning in Younger and Older Listeners.

Older adults typically have difficulty identifying speech that is temporally distorted, such as reverberant, accented, time-compressed, or interrupted speech. These difficulties occur even when hearing thresholds fall within a normal range. Auditory neural processing speed, which we have previously found to predict auditory temporal processing (auditory gap detection), may interfere with the ability to recognize phonetic features as they rapidly unfold over time in spoken speech. Further, declines in perceptuomotor processing speed and executive functioning may interfere with the ability to track, access, and process information. The current investigation examined the extent to which age-related differences in time-compressed speech identification were predicted by auditory neural processing speed, perceptuomotor processing speed, and executive functioning. Groups of normal-hearing (up to 3000 Hz) younger and older adults identified 40, 50, and 60 % time-compressed sentences. Auditory neural processing speed was defined as the P1 and N1 latencies of click-induced auditory-evoked potentials. Perceptuomotor processing speed and executive functioning were measured behaviorally using the Connections Test. Compared to younger adults, older adults exhibited poorer time-compressed speech identification and slower perceptuomotor processing. Executive functioning, P1 latency, and N1 latency did not differ between age groups. Time-compressed speech identification was independently predicted by P1 latency, perceptuomotor processing speed, and executive functioning in younger and older listeners. Results of model testing suggested that declines in perceptuomotor processing speed mediated age-group differences in time-compressed speech identification. The current investigation joins a growing body of literature suggesting that the processing of temporally distorted speech is impacted by lower-level auditory neural processing and higher-level perceptuomotor and executive processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app