Add like
Add dislike
Add to saved papers

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions.

Background: Enteric methane (CH4 ) accounts for about 70% of total CH4 emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric CH4 emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing CH4 and hydrogen sulfide (H2 S) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production.

Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOMRF wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of 39 ± 1 °C in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases (CH4 and carbon dioxide-CO2 ) and H2 S concentrations. CH4 and CO2 gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and H2 S concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis.

Results: Compared to the control treatment the H2 S and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of 1000 μg g- 1 have exhibited the highest amount of concentration reductions for all three gases and microbial population.

Conclusion: Results suggest that both 500 and 1000 μg g- 1 nZnO application levels have the potential to reduce GHG and H2 S concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app