Add like
Add dislike
Add to saved papers

Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance.

Magnesium oxide (MgO) nanostructures were prepared using microwave-assisted (M 1) and hydrothermal (M 2) methods and characterized by XRD, SEM and FT-IR. It exhibits cubic structure with an average crystallite size of 20 nm (M 1) and 14 nm (M 2) and the lattice strain (WH plot) is 0.0017 (M 1), 0.0037 (M 2). It's spherical and rods like structures are confirmed through SEM and TEM. The vibrational stretching mode of MgO is 439 (M 1) and 449 cm-1 (M 2). The optical bandgap is estimated as 5.93 eV (M 1) and 5.85 eV (M 2) through UV-Vis spectra. The fluorescence spectrum shows emission peaks at 414 and 437 (M 1) and 367 and 385 nm (M 2). The photodegradation studies of MgO nanostructures were assessed by monitoring the decolorization of methylene blue and Congo red dyes in aqueous solution under sunlight irradiation. The antibacterial activities of M 1 and M 2 are investigated against the gram-negative (Escherichia coli, Shigella flexneri, Salmonella typhi, Proteus mirabilis, Aeromonas hydrophila and Vibrio cholera) and gram-positive (Bacillus subtilis and Rhodococcus rhodochrous) bacteria. The zone of inhibition of 24 (M 1) and 25 mm (M 2) indicates high antibacterial activity towards the gram negative bacterium A. hydrophila. Confocal laser scanning microscopic (CLSM) analysis was utilized for understanding the variation in antibacterial activity between different orientations of MgO nanostructures. The cytotoxicity assay confirmed that the prepared nanostructures are non - toxic to normal healthy RBC's. In-vitro anticancer efficiency (IC50 ) of MgO nanostructures against human lung cancer cell line (A549) was investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app