Add like
Add dislike
Add to saved papers

Impaired Junctions and Invaded Macrophages in Oral Epithelia With Oral Pain.

Recurrent or chronic oral pain is a great burden for patients. Recently, the links between epithelial barrier loss and disease were extended to include initiation and propagation. To explore the effects of pathohistological changes in oral epithelia on pain, we utilized labial mucosa samples in diagnostic labial gland biopsies from patients with suspected Sjögren's syndrome (SS), because they frequently experience pain and discomfort. In most labial mucosa samples from patients diagnosed with SS, disseminated epithelial cellular edema was prevalent as ballooning degeneration. The disrupted epithelia contained larger numbers of infiltrating macrophages in patients with oral pain than in patients without pain. Immunohistochemistry revealed that edematous areas were distinct from normal areas, with disarranged cell-cell adhesion molecules (filamentous actin, E-cadherin, β-catenin). Furthermore, edematous areas were devoid of immunostaining for transient receptor potential channel vanilloid 4 (TRPV4), a key molecule in adherens junctions. In an investigation on whether impaired TRPV4 affect cell-cell adhesion, calcium stimulation induced intimate cell-cell contacts among oral epithelial cells from wild-type mice, while intercellular spaces were apparent in cells from TRPV4-knockout mice. The present findings highlight the relationship between macrophages and epithelia in oral pain processing, and identify TRPV4-mediated cell-cell contacts as a possible target for pain treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app