Add like
Add dislike
Add to saved papers

Expert knowledge-infused deep learning for automatic lung nodule detection.

BACKGROUND: Computer aided detection (CADe) of pulmonary nodules from computed tomography (CT) is crucial for early diagnosis of lung cancer. Self-learned features obtained by training datasets via deep learning have facilitated CADe of the nodules. However, the complexity of CT lung images renders a challenge of extracting effective features by self-learning only. This condition is exacerbated for limited size of datasets. On the other hand, the engineered features have been widely studied.

OBJECTIVE: We proposed a novel nodule CADe which aims to relieve the challenge by the use of available engineered features to prevent convolution neural networks (CNN) from overfitting under dataset limitation and reduce the running-time complexity of self-learning.

METHODS: The CADe methodology infuses adequately the engineered features, particularly texture features, into the deep learning process.

RESULTS: The methodology was validated on 208 patients with at least one juxta-pleural nodule from the public LIDC-IDRI database. Results demonstrated that the methodology achieves a sensitivity of 88% with 1.9 false positives per scan and a sensitivity of 94.01% with 4.01 false positives per scan.

CONCLUSIONS: The methodology shows high performance compared with the state-of-the-art results, in terms of accuracy and efficiency, from both existing CNN-based approaches and engineered feature-based classifications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app