Add like
Add dislike
Add to saved papers

Bioactive metabolites from the leaves of Withania adpressa.

CONTEXT: Withania (Solanaceae) species are known to be a rich source of withanolides, which have shown several biological properties.

OBJECTIVE: To identify the compounds responsible for Withania adpressa Coss. antioxidant activity and further test them for their NF-κB inhibition and antiproliferative activity in multiple myeloma cells.

MATERIALS AND METHODS: Compounds were obtained from the EtOAc extract of W. adpressa leaves. Structure elucidation was carried out mainly by 1D- and 2D-NMR, and mass spectrometry. Isolated compounds were tested in a dose-response for their in vitro NF-κB inhibition and antiproliferative activity in multiple myeloma cells after 5 and 72 h treatment, respectively.

RESULTS: The fractionation resulted in the isolation of a new glycowithanolide named wadpressine (5) together with withanolide F, withaferin A, coagulin L, and nicotiflorin. The latter showed a moderate ability to scavenge free radicals in DPPH (IC50  = 35.3 µM) and NO (IC50  = 41.3 µM) assays. Withanolide F and withaferin A exhibited low µM antiproliferative activity against both multiple myeloma cancer stem cells and RPMI 8226 cells. Furthermore, they inhibited NF-κB activity with IC50 values of 1.2 and 0.047 µM, respectively. The other compounds showed a moderate inhibition of cell proliferation in RPMI 8226 cells, but were inactive against cancer stem cells and did not inhibit NF-κB activity.

DISCUSSION AND CONCLUSIONS: One new glycowithanolide and four known compounds were isolated. Biological evaluation data gave further insight on the antitumor potential of withanolides for refractory cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app