Add like
Add dislike
Add to saved papers

Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes.

Two new chiral membranes were prepared by modification of gold nanochannel membranes with D-penicillamine and N-acetyl-L-cysteine and were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. The effects of key factors such as the gold deposition time, the pH, and the concentration of sodium dihydrogen phosphate on the separation factor are discussed. Chiral resolution of amino acid enantiomers by the chiral membranes was investigated. The experimental results show that the D-penicillamine-modified membrane has good enantioselectivity toward tyrosine and phenylalanine enantiomers, whereas the N-acetyl-L-cysteine-modified membrane has good enantioselectivity toward tyrosine and tryptophan enantiomers. Furthermore, the chiral recognition mechanism was studied by density functional theory. The calculation results indicate that the basic chiral recognition system of D-penicillamine complexes involves only one chiral selector and one selected enantiomer, whereas that of N-acetyl-L-cysteine complexes involves two chiral selectors and one selected enantiomer. Finally, the NH3 + group of D-penicillamine is proved to play an important role in enhancing interactions between complexes and improving enantioselectivity. Graphical abstract Enantioselective interactions between amino acid enantiomers and sulfhydryl-compound-functionalized gold nanochannel membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app