Add like
Add dislike
Add to saved papers

Knock-in of the Wt1 R394W mutation causes MDS and cooperates with Flt3/ITD to drive aggressive myeloid neoplasms in mice.

Oncotarget 2018 October 20
Wilms tumor 1 (WT1) is a zinc finger transcriptional regulator, and has been implicated as both a tumor suppressor and oncogene in various malignancies. Mutations in the DNA-binding domain of the WT1 gene are described in 10-15% of normal-karyotype AML (NK-AML) in pediatric and adult patients. Similar WT1 mutations have been reported in adult patients with myelodysplastic syndrome (MDS). WT1 mutations have been independently associated with treatment failure and poor prognosis in NK-AML. Internal tandem duplication (ITD) mutations of FMS-like tyrosine kinase 3 ( FLT3 ) commonly co-occur with WT1 -mutant AML, suggesting a cooperative role in leukemogenesis. The functional role of WT1 mutations in hematologic malignancies appears to be complex and is not yet fully elucidated. Here, we describe the hematologic phenotype of a knock-in mouse model of a Wt1 mutation (R394W), described in cases of human leukemia. We show that Wt1 +/R394W mice develop MDS which becomes 100% penetrant in a transplant model, exhibit an aberrant expansion of myeloid progenitor cells, and demonstrate enhanced self-renewal of hematopoietic progenitor cells in vitro . We crossbred Wt1 +/R394W mice with knock-in Flt3 +/ITD mice, and show that mice with both mutations ( Flt3 +/ITD / Wt1 +/R394W ) develop a transplantable MDS/MPN, with more aggressive features compared to either single mutant mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app