Add like
Add dislike
Add to saved papers

Synthetic Bessel light needle for extended depth-of-field microscopy.

Applied Physics Letters 2018 October 30
An ultra-long light needle is highly desired in optical microscopy for its ability to improve the lateral resolution over a large depth of field (DOF). However, its use in image acquisition usually relies on mechanical raster scanning, which compromises between imaging speed and stability and thereby restricts imaging performance. Here, we propose a synthetic Bessel light needle (SBLN) that can be generated and scanned digitally by complex field modulation using a digital micromirror device. In particular, the SBLN achieves a 45-fold improvement in DOF over its counterpart Gaussian focus. Further, we apply the SBLN to perform motionless two-dimensional and three-dimensional microscopic imaging, achieving both improved resolution and extended DOF. Our work is expected to open up opportunities for potential biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app