Add like
Add dislike
Add to saved papers

T 2 Distribution in the Forearm Muscles and the T 2 Threshold for Defining Activated Muscle.

PURPOSE: In order to detect exercised muscles by the increase in T2 , we have defined a Gaussian T2 distribution and reference values (T2r and SDr ) in resting state muscles, and a threshold for detecting exercised muscles.

METHODS: The subjects were healthy adult volunteers (14 males and 12 females). Multiple-spin-echo (MSE) MR images were obtained with 10 TE values from 10 to 100 ms using a 0.2T MRI system. T2 values for 10 forearm muscles were obtained in the resting state and after isometric wrist flexion exercise with 5%, 15%, and 25% of the maximum voluntary contraction (MVC). Z values were obtained by (T2e - T2r )/SDr , where T2e was T2 after exercise. Based on sample size calculations, three thresholds (ZT = 1.00, 2.56, and 3.07) were applied to agonist and antagonist muscles.

RESULTS: A normal distribution of T2 was detected in resting muscles at 34 ± 3 ms (mean ± standard deviation [SD]) in 26 subjects using the Kolmogorov-Smirnov test, the Shapiro-Wilk test, and the Jarque-Bera test (P > 0.05). No gender differences were shown between the T2 or SD, and a similar result was obtained in 12 measurements on a single subject (P < 0.01). The T2r and SDr were used for reference values. The threshold ZT = 1.00 showed the highest sensitivity (0.86) even with 5% MVC, but it showed a lower specificity (0.85) than the other thresholds. ZT = 3.07 showed the highest specificity (1.0), but it showed a lower sensitivity (0.36) with the 5% MVC, compared with ZT = 2.56 (0.50). The receiver operating characteristics analysis also supported these results.

CONCLUSION: We found that the T2 distribution in muscles was Gaussian, suggesting that a one-sample t-test can be applied, and that ZT = 2.56 could cover low-intensity exercise with high specificity and a low false-positive rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app