Add like
Add dislike
Add to saved papers

Alogliptin improves endothelial function by promoting autophagy in perivascular adipose tissue of obese mice through a GLP-1-dependent mechanism.

Vascular Pharmacology 2018 November 15
OBJECTIVE: Perivascular adipose tissue (PVAT) regulates vascular function in a paracrine manner and the vasodilatory effect of PVAT on vessels is completely abolished in obesity. In addition, autophagy is required for maintaining biological function of PVAT and has been shown to be inhibited in obesity. The aim of this study was to explore whether alogliptin improves endothelial function by promoting autophagy in PVAT in obese mice.

METHODS: C57BL/6 mice were maintained on high fat diet with or without alogliptin intervention for 3 months. Vasorelaxation function of thoracic aorta with or without PVAT was determined. Autophagy related protein level of p62 and LC3B, along with phosphorylated mTOR (p-mTOR) were evaluated. In addition, the effects of alogliptin on autophagy were also investigated in cultured adipocytes.

RESULTS: The presence of PVAT significantly impaired endothelium-dependent vasodilation in obese mice and alogliptin intervention corrected this defect. Autophagy in PVAT was decreased in obese mice and alogliptin intervention activated autophagy. Activating autophagy in PVAT improved endothelium-dependent vasodilation while blocking it in PVAT impaired vasodilation function. Further, addition of glucagon-like peptide-1 (GLP-1) but not alogliptin alone activated autophagy. Moreover, GLP-1 and alogliptin co-treatment did not show additive effect on activating autophagy.

CONCLUSIONS: These results revealed that promoting autophagy in PVAT improved endothelial function in response to alogliptin intervention. Additionally, the beneficial effect of alogliptin intervention on PVAT was GLP-1 dependent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app