Add like
Add dislike
Add to saved papers

Prismatic Deflection of Live Tumor Cells and Cell Clusters.

ACS Nano 2018 November 22
The analysis of heterogeneous subpopulations of circulating tumor cells (CTCs) is critical to enhance our understanding of cancer metastasis and enable noninvasive cancer diagnosis and monitoring. The phenotypic variability and plasticity of these cells-properties closely linked to their clinical behavior-demand techniques that isolate viable, discrete fractions of tumor cells for functional assays of their behavior and detailed analysis of biochemical properties. Here, we introduce the Prism Chip, a high-resolution immunomagnetic profiling and separation chip which harnesses a cobalt-based alloy to separate a flowing stream of nanoparticle-bound tumor cells with differential magnetic loading into 10 discrete streams. Using this approach, we achieve exceptional purity (5.7 log white blood cell depletion) of isolated cells. We test the differential profiling function of the integrated device using prostate cancer blood samples from a mouse xenograft model. Using integrated graphene Hall sensors, we demonstrate concurrent automated profiling of single cells and CTC clusters that belong to distinct subpopulations based on protein surface expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app