JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of the Cochlear Implant Electrode Array Placement on the Current Spread in the Cochlea.

Three-dimensional (3D) computational models of the inner ear have been utilised to assist in investigating the factors that influence cochlear implant (CI) outcomes. A volume conductor cochlear model with an implanted electrode array was reconstructed from X-ray microtomography $(\mu$ CT) scans of a cadaveric human temporal bone. To mimic an in-vivo setting, the cochlea was embedded in a head model. The finite element (FE) method was used to analyse the electrical potential $\varphi$ in the cochlear nerve as a result of CI stimulation. In order to study the influence of electrode array placement on the current spread within the cochlea and the modiolus, computer simulations with six electrode array placements were conducted. $\varphi$ was evaluated at the tip of nerve fibres reconstructed within the cochlear nerve so as to predict the stimulation of a neuron population. It was found in most cases that a medial electrode array placement produced a narrower $\varphi$ peak at the fibre tip than a lateral one, although the differences were small.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app