JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Cerebellar Spiking Neural Model for Phase Reversal of Vestibulo-ocular Reflex.

Cerebellum possesses very rich motor control and learning capability which is critical for animals. In this study, we proposed a spiking neural network model of cerebellum for gain and phase adaptation in vestibulo-ocular reflex (VOR). VOR is a critical adaptive reflexive eye movement for maintaining a stable visual field. In this model (with neuron number at the order of 104), synaptic plasticity at parallel fiber-Purkinje cell synapses was considered. In particular, we have shown that the inhibitory inputs from molecular layer interneurons on Purkinje cells play a critical role in phase adaptation of VOR. The inhibitory input from interneurons indirectly affects the strength of long-term potentiation (LTP) and long-term depression (LTD), resulting in more drastic phase shift upon learning and hence allowing phase reversal of VOR. The strength of inhibitory input also affects the maximum phase shift that can be achieved. Our result is consistent with experiments in mutant mice with blocked inhibitory inputs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app