Add like
Add dislike
Add to saved papers

Short-Term Model-Based Multiscale Complexity Analysis of Cardiac Control Provides Complementary Information to Single-Scale Approaches.

The study compares a recently proposed shortterm model-based linear multiscale complexity approach to a single-scale application of the same method and to a model-free nonlinear one based on the computation of conditional entropy with the aim at assessing the complementary information. Comparison was carried out over 24 hours Holter recordings of heart period variability during daytime and nighttime in 12 healthy men (age: 34-55 years). Single-scale methods were able to detect the increased complexity of the cardiac control during nighttime. Multiscale complexity analysis showed that this increase was due to an increase of complexity in the low frequency band (from 0.04 to 0.15 Hz), while complexity in the range of frequencies typical of the respiratory rate was unmodified. Regardless of the method (i.e. linear or nonlinear) single-scale complexity indexes were uncorrelated to the multiscale ones. We conclude that short-term model-based linear multiscale complexity approach provides complementary information to single-scale methods in an application devoted to the analysis of cardiac control from 24 hours Holter recordings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app