Add like
Add dislike
Add to saved papers

OCT Fluid Segmentation using Graph Shortest Path and Convolutional Neural Network .

Diagnosis and monitoring of retina diseases related to pathologies such as accumulated fluid can be performed using optical coherence tomography (OCT). OCT acquires a series of 2D slices (Bscans). This work presents a fully-automated method based on graph shortest path algorithms and convolutional neural network (CNN) to segment and detect three types of fluid including sub-retinal fluid (SRF), intra-retinal fluid (IRF) and pigment epithelium detachment (PED) in OCT Bscans of subjects with age-related macular degeneration (AMD) and retinal vein occlusion (RVO) or diabetic retinopathy. The proposed method achieves an average dice coefficient of 76.44%, 92.25% and 82.14% in Cirrus, Spectralis and Topcon datasets, respectively. The effectiveness of the proposed methods was also demonstrated in segmenting fluid in OCT images from the 2017 Retouch challenge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app