Add like
Add dislike
Add to saved papers

Automated Myocardial Wall Motion Classification using Handcrafted Features vs a Deep CNN-based mapping.

Compared to other modalities such as computed tomography or magnetic resonance imaging, the appearance of ultrasound images is highly dependent on the expertise of the sonographer or clinician making the image acquisition, as well as the machine used, making it a challenge to analyze due to the frequent presence of artefacts, missing boundaries, attenuation, shadows, and speckle. In addition, manual contouring of the epicardial and endocardial walls exhibits large inconsistencies and variations as it is strongly dependent on the sonographer's training and expertise. Hence, in this paper we propose a fully automated image analysis framework to ultimately perform wall motion abnormality classification in 2D+T images. We explore both traditional Random Forests classification with handcrafted features and spatio-temporal hierarchical aggregation of information with a deep learning CNN-based approach. Regarding the later classifier, we also investigate the effect of local phase information retrieval through the use of Feature Asymmetry (FA), and demonstrate that pre-processing videos with FA enables the spatio-temporal CNN to better discover relevant left ventricle endocardial abstractions from low-level features to high-level representations automatically.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app