Add like
Add dislike
Add to saved papers

Bayesian Optimization of Asynchronous Distributed Microelectrode Theta Stimulation and Spatial Memory.

There is a great need for an electrical stimulation therapy to treat medication-resistant, surgically ineligible epileptic patients that successfully reduces seizure incidence with minimal side effects. Critical to advancing such therapies will be identifying the trade-offs between therapeutic efficacy and side effects. One novel treatment developed in the tetanus toxin rat model of mesial temporal lobe epilepsy, asynchronous distributed microelectrode stimulation (ADMETS) in the hippocampus has been shown to significantly reduce seizure frequency. However, our results have demonstrated that ADMETS has a negative effect on spatial memory that scales with the amplitude of stimulation. Given the high dimensional space of possible stimulation parameters, it is difficult to construct a mapping from variations in stimulation to behavioral effect. In this project, we present a novel, principled approach using closed-loop Bayesian optimization to tune stimulation that successfully maximize a desired objective - performance on a spatial memory assay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app