Add like
Add dislike
Add to saved papers

Cholinergic Modulation of CA1 Pyramidal Cells via M1 Muscarinic Receptor Activation: A Computational Study at Physiological and Supraphysiological Levels.

The hippocampus receives extensive cholinergic modulation from the basal forebrain, which has been shown to have a prominent role in attention, learning, and synaptic plasticity. Disruptions of this modulation have been linked to a variety of neural disorders including Alzheimer's Disease. Pyramidal cells of the CA1 region of the hippocampus express several cholinergic receptor types in different locations throughout the cells' morphology. Developing a computational model of these cells and their modulation provides a unique opportunity to explore how each receptor type alters the overall computational role of the cell. To this end we implemented a kinetic model of the most widely distributed receptor type, the M1 muscarinic receptor and examined its role on excitation of a compartmental model of a CA1 pyramidal cell. We demonstrate that the proposed model replicates the increased pyramidal cell excitability seen in experimental results. We then used the model to replicate the effect of organophosphates, a class of pesticides and chemical weapons, whose effects consist in inhibiting the hydrolysis of acetylcholine; we demonstrated the effect of increasing concentrations of acetylcholine on the pyramidal cell's excitability. The cell model we implemented and its associated modulation constitute a basis for exploring the effects of cholinergic modulation in a large scale network model of the hippocampus both under physiological and supraphysiological levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app