Add like
Add dislike
Add to saved papers

TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast.

PURPOSE: Thymic stromal lymphopoietin (TSLP) acts as a critical cytokine involved in asthmatic airway remodeling. Our study aimed to characterize the crosstalk between airway epithelial cells and fibroblasts regulated by TSLP through the signaling pathways of Mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3).

MATERIALS AND METHODS: Human biopsy specimens and lung tissues from mice were stained with hematoxylin and eosin (H&E) and immunohistochemistry. Human lung fibroblasts were stimulated with human recombinant TSLP. The protein expression of phosphorylation of STAT3 (p-STAT3) and phosphorylation of MAPK as well as the expression of collagen I and alpha-smooth muscle actin (α-SMA) were detected by Western blotting and immunofluorescence. Co-culture was performed to detect the influence of TSLP secreted by airway epithelial cells on fibroblasts. An ovalbumin (OVA)-induced asthmatic murine model was established with or without intraperitoneal injection of SB203580 (inhibitor of p-38). Protein expression in lung tissue was detected by immunohistochemistry and western blotting.

RESULT: TSLP could activate MAPK in HLF-1. SB203580 could inhibit the activation of p38, attenuate phosphorylation of STAT3, and decrease the expression of collagen I and α-SMA consequently in human fibroblasts. Co-culture demonstrated that TSLP secreted by epithelial cells could promote the expression of collagen I and α-SMA and aggravates airway remodeling in fibroblasts. In vivo, expression of TSLP, collagen I, α-SMA, p-p38 and p-STAT3 was upregulated in airway tissue of OVA-challenged mice and downregulated in mice which were treated by SB203580. The tissue staining showed that airway structure change was attenuated by SB203580 compared with OVA challenged mice as well.

CONCLUSIONS: TSLP might promote asthmatic airway remodeling via p38 MAPK-STAT3 axis activation and the crosstalk between airway epithelial cells and fibroblasts could aggravate remodeling. Blockade of p38 could alleviate airway remodeling which might provide a new therapeutic target for asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app