JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A Novel Perfusion System for Damage Control of Hyperkalemia in Swine.

Shock 2018 December
INTRODUCTION: The standard of care for refractory hyperkalemia is renal replacement therapy (RRT). However, traditional RRT requires specialized equipment, trained personnel, and large amounts of dialysate. It is therefore poorly suited for austere environments. We hypothesized that a simplified hemoperfusion system could control serum potassium concentration in a swine model of acute hyperkalemia.

METHODS: Ten pigs were anesthetized and instrumented. A dialysis catheter was inserted. After bilateral nephrectomy, animals received intravenous potassium chloride and were randomized to the control or treatment group. In both groups, blood was pumped through an extracorporeal circuit (EC) with an in-line hemodialyzer. In the treatment arm, ultrafiltrate from the hemodialyzer was diverted through cartridges containing novel potassium binding beads and returned to the EC. Blood samples were obtained every 30 min for 6 h.

RESULTS: Serum potassium concentration was significantly lower in the treatment than in the control group over time (P = 0.02). There was no difference in serum total calcium concentration for group or time (P = 0.13 and 0.44, respectively) or platelet count between groups or over time (P = 0.28 and 1, respectively). No significant EC thrombosis occurred. Two of five animals in the control group and none in the treatment group developed arrhythmias. All animals survived until end of experiment.

CONCLUSIONS: A simplified hemoperfusion system removed potassium in a porcine model. In austere settings, this system could be used to temporize patients with hyperkalemia until evacuation to a facility with traditional RRT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app