Add like
Add dislike
Add to saved papers

Proteomics reveals ablation of PlGF increases antioxidant and neuroprotective proteins in the diabetic mouse retina.

Scientific Reports 2018 November 14
Placental growth factor (PlGF or PGF), a member of the vascular endothelial growth factor (VEGF) sub-family, plays a crucial role in pathological angiogenesis and inflammation. However, the underlying molecular mechanisms that PlGF mediates regarding the complications of non-proliferative diabetic retinopathy (DR) remain elusive. Using an LC-MS/MS-based label-free quantification proteomic approach we characterized the alterations in protein expression caused by PlGF ablation in the retinas obtained from C57BL6, Akita, PlGF-/- and Akita.PlGF-/- mice. After extraction and enzymatic digestion with Trypsin/LysC, the retinal proteins were analyzed by Q-Exactive hybrid Quadrupole-Orbitrap mass spectrometry. Differentially expressed proteins (DEPs) were identified in four comparisons based on Z-score normalization and reproducibility by Pearson's correlation coefficient. The gene ontology (GO), functional pathways, and protein-protein network interaction analysis suggested that several proteins involved in insulin resistance pathways (Gnb1, Gnb2, Gnb4, Gnai2, Gnao1, Snap2, and Gngt1) were significantly down-regulated in PlGF ablated Akita diabetic mice (Akita.PlGF-/- vs. Akita) but up-regulated in Akita vs. C57 and PlGF-/- vs. C57 conditions. Two proteins involved in the antioxidant activity and neural protection pathways, Prdx6 and Map2 respectively, were up-regulated in the Akita.PlGF-/- vs. Akita condition. Overall, we predict that down-regulation of proteins essential for insulin resistance, together with the up-regulation of antioxidant and neuroprotection proteins highlight and epitomize the potential mechanisms important for future anti-PlGF therapies in the treatment of DR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app