Add like
Add dislike
Add to saved papers

Liquid-Metal Enabled Droplet Circuits.

Micromachines 2018 May 6
Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve⁻machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app