Add like
Add dislike
Add to saved papers

The QuantiPhage assay: A novel method for the rapid colorimetric detection of coliphages using cellulose pad materials.

Water Research 2018 November 3
Assessment of viral contamination is essential for monitoring the microbial quality of water and protection of public health, as human virus presence is not accurately determined using bacterial indicators. Currently, the time required for conventional viral testing means that water contaminated with human pathogens may be used (e.g. for drinking, recreation or irrigation) days before results are available. Here we report a new rapid method for coliphage enumeration, the QuantiPhage (QP) assay. The novelty of the assay is the use of cellulose absorbent pad materials to support coliphage growth and colorimetric detection, in place of agar that is used in the plaque assay. In addition to saving time associated with agar preparation and tempering, the QP assay enabled enumeration of somatic coliphages in 1.5-2 h and F+ coliphages in 2.5-3 h. The assays were highly sensitive, with a lower detection limit of 1 plaque forming unit (PFU) per mL where 1 mL sample volumes were analysed, and 1 PFU per 10 mL where 10 mL sample volumes were analysed. This is the first rapid culture assay to enable low numbers of coliphages to be reliably detected and to produce directly equivalent results to agar-based plaque assays. A novel gelatin-immobilisation method is also reported, that reduces time to prepare bacterial cells from ∼20 h to 40-60 min (depending on the assay format), and provides a ready to use form of cells, that is compatible with rapid detection and kit formats. When applied to analysis of somatic coliphages in wastewater samples and surface water samples, mean differences in results of the QP assay and the conventional plaque assay were not statistically significant (mean difference ≤ 0.15 log10  PFU/L and 0.5 PFU/10 mL respectively, P > 0.05). The QP is a valuable tool for assessing microbial water quality, which may assist in improving the management of water resources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app