Add like
Add dislike
Add to saved papers

Differences in synaptic integration between direct and indirect striatal projection neurons: role of Ca V 3 channels.

Synapse 2018 November 13
Different corticostriatal suprathreshold responses in direct and indirect striatal projection neurons (SPNs) of rodents have been reported. Responses consist in prolonged synaptic potentials of polysynaptic and intrinsic origin, in which voltage-gated Ca²⁺-currents play a role. Recording simultaneous Ca²⁺-imaging and voltage responses at the soma, while activating the corticostriatal pathway, we show that encoding of synaptic responses into trains of action potentials (APs) is different in SPNs: firing of APs in D1-SPNs increase gradually, in parallel with Ca²⁺-entry, as a function of stimulus intensity. In contrast, D2-SPNs attain a maximum number of evoked spikes at low stimulus intensities, Ca²⁺entry is limited, and both remain the same in spite of increasing stimulus strength. Stimulus needs to reach certain intensity, to have propagated Ca²⁺-potentials to the soma plus a sudden step in Ca²⁺entry, without changing the number of fired APs, phenomena never seen in D1-SPNs. Constant firing in spite of changing stimulus, suggested the involvement of underlying inactivating potentials. We found that Caᵥ3 currents contribute to Ca2+ entry in both classes of SPNs, but have a more notable effect in D2-SPNs, where a low-threshold spike was disclosed. Blockade of CaV 3 channels retarded the steep rise in firing in D2-SPNs. Inhibition block increased the number of spikes fired by D2-SPNs, without changing firing in D1-SPNs. These differences in synaptic integration enable a biophysical dissimilarity: dendritic inhibition appears to be more relevant for D2-SPNs. This may imply distinctions in the set of interneurons affecting each SPN class. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app