Add like
Add dislike
Add to saved papers

Fluid sparing and norepinephrine use in a rat model of resuscitated haemorrhagic shock: end-organ impact.

BACKGROUND: Haemostasis and correction of hypovolemia are the pillars of early haemorrhage shock (HS) management. Vasopressors, which are not recommended as first-line therapy, are an alternative to aggressive fluid resuscitation, but data informing the risks and benefits of vasopressor therapy as fluid-sparing strategy is lacking. We aimed to study its impact on end organs, in the setting of a haemodynamic response to the initial volume resuscitation.

METHODS: Following controlled HS (60 min) induced by blood withdrawal, under anaesthesia and ventilation, male Wistar rats (N = 10 per group) were randomly assigned to (1) sham, (2) HS with fluid resuscitation only [FR] and (3) HS with fluid resuscitation to restore haemodynamic (MAP: mean arterial pressure) then norepinephrine [FR+NE]. After a reperfusion time (60 min) during which MAP was maintained with fluid or norepinephrine, equipment was removed and animals were observed for 24 h (N = 5) or 72 h (N = 5) before euthanasia. Besides haemodynamic parameters, physiological markers (creatinine, lactate, pH, PaO2 ) and one potential contributor to vasoplegia (xanthine oxidase activity) were measured. Apoptosis induction (caspase 3), tissue neutrophil infiltration (MPO: myeloperoxidase) and illustrative protein markers were measured in the lung (Claudin-4), kidney (KIM-1) and brain amygdala (Iba1).

RESULTS: No difference was present in MAP levels during HS or reperfusion between the two resuscitation strategies. FR required significantly more fluid than FR+NE (183% vs 106% of bleed-out volume; p = 0.003), when plasma lactate increased similarly. Xanthine oxidase was equally activated in both HS groups. After FR+NE, creatinine peaked higher but was similar in all groups at later time points. FR+NE enhanced MPO in the lung, when Claudin-4 increased significantly after FR. In the brain amygdala, FR provoked more caspase 3 activity, MPO and microglial activation (Iba1 expression).

CONCLUSION: Organ resuscitation after controlled HS can be assured with lesser fluid administration followed by vasopressors administration, without signs of dysoxia or worse evolution. Limiting fluid administration could benefit the brain and seems not to have a negative impact on the lung or kidney.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app