Add like
Add dislike
Add to saved papers

A New Physiologic Mouse Model of One Anastomosis Gastric Bypass.

BACKGROUND: One anastomosis gastric bypass (OAGB) is a modern metabolic operation that has been demonstrated to be a rapid, safe, and effective procedure. As for other bariatric operations, the mechanisms and long-term effects of this procedure remain largely unknown and are difficult to address in human studies. Here, we present a new physiologic mouse model for mechanistic and long-term investigations.

METHODS: Six-week-old C57Bl/6 mice were fed a high-fat diet for 12 weeks and scheduled for OAGB or sham operation. Mice were observed for 2 weeks after the operation, and weight and metabolic condition were monitored.

RESULTS: Six mice were used to adapt the surgical technique. Afterwards, another 7 mice were scheduled for OAGB without further complications. The newly established OAGB procedure resulted in significant weight loss and improvement of glucose metabolism 2 weeks after the operation.

CONCLUSIONS: The operation presented here is an easy-to-learn and physiologic mouse model of OAGB that can be used for further studies in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app