Add like
Add dislike
Add to saved papers

Timing of Muscle Activation Is Altered During Single-Leg Landing Tasks After Anterior Cruciate Ligament Reconstruction at the Time of Return to Sport.

OBJECTIVES: It is well known that alterations in landing mechanics persist for years after anterior cruciate ligament reconstruction (ACL-R). Nevertheless, existing literature is controversial in reporting successful or unsuccessful recovery of prelanding muscle activation timing after ACL-R. The study aimed at comparing myoelectric and kinematic patterns during landing tasks between ACL-R and healthy subjects.

DESIGN: Cross-sectional study.

SETTING: Institutional research laboratory.

PATIENTS AND INTERVENTION: Fifteen male athletes after ACL-R using patellar tendon and 11 using hamstrings autograft at the time of return to sport were recruited. Fifteen healthy athletes served as control group. Participants performed 4 different single-leg landing tasks arriving onto a force plate.

MAIN OUTCOME MEASURES: Electromyographic (EMG) activity of knee extensors and flexors, normalized vertical ground reaction force (vGRF), and knee angular displacement were recorded.

RESULTS: In all the tasks, preimpact EMG duration was longer in ACL-R (112 ± 28 ms in the knee extensors; 200 ± 34 ms in the knee flexors) compared with healthy participants (74 ± 19 ms in the knee extensors; 153 ± 29 ms in the knee flexors; P < 0.05). Initial contact (IC) and maximum postimpact knee angle were lower in ACL-R (9 ± 7 degrees at IC; 39 ± 12 degrees at maximum flexion) compared with healthy participants (17 ± 9 degrees at IC; 52 ± 15 degrees at maximum flexion; P < 0.05). Normalized vGRF was higher in ACL-R compared with healthy participants (3.4 ± 0.5 and 2.7 ± 0.6; P < 0.05).

CONCLUSIONS: At the time of return to sport, ACL-R subjects showed altered motor control strategies of single-leg landings. These alterations may lead to uncoordinated movement, hence increasing the risk of reinjury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app