Add like
Add dislike
Add to saved papers

High-precision method for cyclic loading of small-animal vertebrae to assess bone quality.

Bone Reports 2018 December
One potentially important bone quality characteristic is the response of bone to cyclic (repetitive) mechanical loading. In small animals, such as in rats and mice, cyclic loading experiments are particularly challenging to perform in a precise manner due to the small size of the bones and difficult-to-eliminate machine compliance. Addressing this issue, we developed a precise method for ex vivo cyclic compressive loading of isolated mouse vertebral bodies. The method has three key characteristics: 3D-printed support jigs for machining plano-parallel surfaces of the tiny vertebrae; pivotable loading platens to ensure uniform contact and loading of specimen surfaces; and specimen-specific micro-CT-based finite element analysis to measure stiffness to prescribe force levels that produce the same specified level of strain for all test specimens. To demonstrate utility, we measured fatigue life for three groups ( n  = 5-6 per group) of L5 vertebrae of C57BL/6J male mice, comparing our new method against two methods commonly used in the literature. We found reduced scatter of the mechanical behavior for this new method compared to the literature methods. In particular, for a controlled level of strain, the standard deviation of the measured fatigue life was up to 5-fold lower for the new method (F-ratio = 4.9; p  < 0.01). The improved precision for this new method for biomechanical testing of small-animal vertebrae may help elucidate aspects of bone quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app