Add like
Add dislike
Add to saved papers

Asymmetry of Brain Excitability: A New Biomarker that Predicts Objective and Subjective Symptoms in Multiple Sclerosis.

OBJECTIVES: Investigate whether asymmetrical corticospinal excitability exists in Multiple Sclerosis (MS) and its association with MS symptoms.

METHODS: Bilateral resting and active motor thresholds (RMT, AMT) were gathered using transcranial magnetic stimulation among 82 MS patients. Corticospinal excitability (CSE) asymmetry was expressed as the ratio between weaker and stronger sides' RMT and AMT. Stronger and weaker side was determined by pinch and grip strength. We examined whether CSE asymmetry predicted symptoms.

RESULTS: AMT asymmetry ratio revealed atypical CSE asymmetry whereby the hemisphere associated with the weaker hand was more excitable in early MS. After controlling for MS disease demographics, shifting of CSE asymmetry towards greater excitability in the stronger side significantly predicted more severe symptoms including Expanded Disease Severity Scale, nine-hole peg test, cognitive processing speed, walking speed, heat sensitivity, fatigue, and subjective impact of MS.

CONCLUSION: CSE asymmetry significantly predicted the severity of MS-related physical and objective cognitive symptoms. The phenomenon may be related to neuroinflammation-mediated hyperexcitability. Shifting of asymmetry toward less excitability on the weaker side may suggest the onset of a more neurodegenerative phase of the disease.

SIGNIFICANCE: Shifting of hemispheric excitability, detected using a CSE asymmetry ratio, may be a useful biomarker to track disease progression and understand the benefits of treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app