Add like
Add dislike
Add to saved papers

Soil aggregates as biogeochemical reactors and implications for soil-atmosphere exchange of greenhouse gases-a concept.

Global Change Biology 2018 November 10
Soil-atmosphere exchange significantly influences the global atmospheric abundances of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O). These greenhouse gases (GHGs) have been extensively studied at the soil profile level and extrapolated to coarser scales (regional and global). However, finer scale studies of soil aggregation have not received much attention, even though elucidating the GHG activities at the full spectrum of scales rather than just coarse levels is essential for reducing the large uncertainties in the current atmospheric budgets of these gases. Through synthesizing relevant studies, we propose that aggregates, as relatively separate micro-environments embedded in a complex soil matrix, can be viewed as biogeochemical reactors of GHGs. Aggregate reactivity is determined by both aggregate size (which determines the reactor size) and the bulk soil environment including both biotic and abiotic factors (which further influence the reaction conditions). With a systematic, dynamic view of the soil system, implications of aggregate reactors for soil-atmosphere GHG exchange are determined by both an individual reactor's reactivity and dynamics in aggregate size distributions. Emerging evidence supports the contention that aggregate reactors significantly influence soil-atmosphere GHG exchange and may have global implications for carbon and nitrogen cycling. In the context of increasingly frequent and severe disturbances, we advocate more analyses of GHG activities at the aggregate scale. To complement data on aggregate reactors, we suggest developing bottom-up aggregate-based models (ABMs) that apply a trait-based approach and incorporate soil system heterogeneity. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app