Add like
Add dislike
Add to saved papers

An exploratory study using QICAR models for prediction of adsorption capacity of multi-walled carbon nanotubes for heavy metal ions.

The Quantitative Ion Character-Activity Relationship (QICAR) method was used for correlating metal ionic characteristics with the maximum adsorption capacity (qmax ) of multi-walled carbon for heavy metals. The experimental values of qmax for 25 heavy metal ions, estimated by the Langmuir isotherm model, were used to construct a QICAR model. The genetic algorithm, enhanced replacement method and successive projection algorithm procedures were applied as variable selection algorithms to choose the optimal subsets of descriptors. The selected variables were correlated with qmax values by using partial least squares (PLS) regression. Orthogonal signal correction was applied as a pre-processing technique. Among of different variable selection methods, the enhanced replacement method displayed noticeable statistical parameters of the final model. The results of the enhancement replacement method-orthogonal correction signal-PLS model, with RMSEC = 0.733, r2 c = 0.999 and r2 p = 0.946, were excellent and dramatically better than those of other models. The developed QICAR model satisfied the internal and external validation criteria. The importance of electronegativity, ionic radius and atomic number of the heavy metal ions indicated the impact of the tendency to accept electrons and the size of ions in adsorption on carbon nanotubes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app