Add like
Add dislike
Add to saved papers

Lipid metabolism in adipose tissue and liver from diet-induced obese rats: a comparison between Wistar and Sprague-Dawley strains.

Some researchers have proposed important variations in adipose tissue among different strains of rats and mice in response to a high-caloric (hc) diet, but data concerning the mechanisms underlying these differences are scarce. The aim of the present research was to characterize different aspects of triacylglycerol (TG) metabolism and clock genes between Sprague-Dawley and Wistar rats. For this purpose, 16 male Sprague-Dawley and 16 male Wistar rats were divided into four experimental groups (n = 8) and fed either a normal-caloric (nc) diet or a hc diet for 6 weeks. After sacrifice, liver and epididymal, perirenal, mesenteric, and subcutaneous adipose tissue depots were dissected, weighed and immediately frozen. Liver TG content was quantified, RNA extracted for gene expression analysis and fatty acid synthase enzyme activity measured. Two-way ANOVA and Student's t test were used to perform the statistical analyses. Under hc feeding conditions, Wistar rats were more prone to fat accumulation in adipose tissue, especially in the epididymal fat depot, due to their increased lipogenesis and fatty acid uptake. By contrast, both strains of rats showed similarly fatty livers after hc feeding. Peripheral clock machinery seems to be a potential explanatory mechanism for Wistar and Sprague-Dawley strain differences. In conclusion, Wistar strain seems to be the best choice as animal model in dietary-induced obesity studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app