Add like
Add dislike
Add to saved papers

Revisiting the structure of low-Mach number, low-beta, quasi-perpendicular shocks.

A study of the structure of 145 low-Mach number ( M ≤ 3), low-beta ( β ≤ 1), quasi-perpendicular interplanetary collisionless shock waves observed by the Wind spacecraft has provided strong evidence that these shocks have large-amplitude whistler precursors. The common occurrence and large amplitudes of the precursors raise doubts about the standard assumption that such shocks can be classified as laminar structures. This directly contradicts standard models. In 113 of the 145 shocks (~78%), we observe clear evidence of magnetosonic-whistler precursor fluctuations with frequencies ~0.1-7 Hz. We find no dependence on the upstream plasma beta, or any other shock parameter, for the presence or absence of precursors. The majority (~66%) of the precursors propagate at ≤45° with respect to the upstream average magnetic field and most (~87%) propagate ≥30° from the shock normal vector. Further, most (~79%) of the waves propagate at least 20° from the coplanarity plane. The peak-to-peak wave amplitudes ( δB pk-pk ) are large with a range of maximum values for the 113 precursors of ~0.4-13 nT with an average of ~2 nT. When we normalize the wave amplitudes to the upstream averaged magnetic field and the shock ramp amplitude, we find average values of ~40% and ~220%, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app