Overexpression of Three Duplicated BnPCS Genes Enhanced Cd Accumulation and Translocation in Arabidopsis thaliana Mutant cad1-3

Jiuyuan Bai, Xin Wang, Rui Wang, Jing Wang, Sixiu Le, Yun Zhao
Bulletin of Environmental Contamination and Toxicology 2018 November 7
Phytochelatins are widely known to chelate heavy metal in vacuole and decrease plant damage. Phytochelatin synthase gene (PCS), which is involved in phytochelatins synthesis, is commonly designated as a key gene for phytoremediation. In our study, we cloned three duplicated BnPCS genes from Brassica napus and transformed them into Arabidopsis thaliana AtPCS1 mutant cad1-3, respectively. Three transgene lines and cad1-3 were subjected to a cascade of concentrations of cadmium (Cd) treatment. Evaluation of morphological and physiological measurement results show that transgene lines possess higher Cd tolerance and resistance than A. thaliana mutant cad1-3. The analysis of PCs and Cd contents in root and shoot collectively indicated that transgenic plants promoted Cd accumulation and translocation. In conclusion, all the three BnPCS transgene lines enhanced Cd tolerance, accumulation and translocation, which could provide gene resources for phytoremediation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"