JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel ternary heterostructure with dramatic SERS activity for evaluation of PD-L1 expression at the single-cell level.

Science Advances 2018 November
Surface-enhanced Raman scattering (SERS) probes based on a charge transfer (CT) process with high stability and reproducibility are powerful tools under open-air conditions. However, the key problem ahead of practical usage of CT-based SERS technology is how to effectively improve sensitivity. Here, a novel ternary heterostructure SERS substrate, Fe3 O4 @GO@TiO2 , with a significant enhancement factor of 8.08 × 106 was first synthesized. We found the remarkable enhanced effect of SERS signal to be attributed to the resonance effect of CuPc, CT between GO and TiO2 , and enrichment from a porous TiO2 shell. In addition, we developed a robust SERS probe with good recyclability under visible light illumination on Fe3 O4 @GO@TiO2 nanocomposites toward ultrasensitive detection of cancer cells down to three cells. We have now successfully applied this probe for in situ quantification and imaging of programmed cell death receptor ligand 1 (PD-L1) on triple-negative breast cancer cell surface at the single-cell level and for monitoring the expression variation of PD-L1 during drug treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app