Add like
Add dislike
Add to saved papers

Fully tuned RBF neural network controller for ultrasound hyperthermia cancer tumour therapy.

Thermal dose is an important clinical efficacy index for hyperthermia cancer treatment. This paper presents a new direct radial basis function (RBF) neural network controller for high-temperature hyperthermia thermal dose during the therapeutic procedure of cancer tumours by short-time pulses of high-intensity focused ultrasound (HIFU). The developed controller is stabilized and automatically tuned based on Lyapunov functions and ant colony optimization (ACO) algorithm, respectively. In addition, this thermal dose control system has been validated using one-dimensional (1-D) biothermal tissue model. Simulation results showed that the fully tuned RBF neural network controller outperforms other controllers in the previous studies by achieving targeted thermal dose with shortest treatment times less than 13.5 min, avoiding the tissue cavitation during the thermal therapy. Moreover, the maximum value of its mean integral time absolute error (MTAE) is 98.64, which is significantly less than the resulted errors for the manual-tuned controller under the same treatment conditions of all tested cases. In this study, integrated ACO method with robust RBF neural network controller provides a successful and improved performance to deliver accurate thermal dose of hyperthermia cancer tumour treatment using the focused ultrasound transducer without external cooling effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app