Add like
Add dislike
Add to saved papers

Diaphanous-1 affects the nanoscale clustering and lateral diffusion of receptor for advanced glycation endproducts (RAGE).

The interactions between the cytoplasmic protein diaphanous-1 (Diaph1) and the receptor for advanced glycation endproducts (RAGE) drive the negative consequences of RAGE signaling in several disease processes. Reported in this work is how Diaph1 affects the nanoscale clustering and diffusion of RAGE measured using super-resolution stochastic optical reconstruction microscopy (STORM) and single particle tracking (SPT). Altering the Diaph1 binding site has a different impact on RAGE diffusion compared to when Diaph1 expression is reduced in HEK293 cells. In cells with reduced Diaph1 expression (RAGE-Diaph1-/- ), the average RAGE diffusion coefficient is increased by 35%. RAGE diffusion is known to be influenced by the dynamics of the actin cytoskeleton. Actin labeling shows that a reduced Diaph1 expression leads to cells with reduced filopodia density and length. In contrast, when two RAGE amino acids that interact with Diaph1 are mutated (RAGERQ/AA ), the average RAGE diffusion coefficient is decreased by 16%. Since RAGE diffusion is slowed when the interaction between Diaph1 and RAGE is disrupted, the interaction of the two proteins results in faster RAGE diffusion. In both RAGERQ/AA and RAGE-Diaph1-/- cells the number and size of RAGE clusters are decreased compared to cells expressing RAGE and native concentrations of Diaph1. This work shows that Diaph1 has a role in affecting RAGE clusters and diffusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app