Add like
Add dislike
Add to saved papers

Consumption of non-digestible oligosaccharides elevates colonic alkaline phosphatase activity by up-regulating the expression of IAP-I, with increased mucins and microbial fermentation in rats fed a high-fat diet.

We have recently reported that soluble dietary fibre, glucomannan, increased colonic alkaline phosphatase (ALP) activity and the gene expression without affecting the small-intestinal activity and that colonic ALP was correlated with gut mucins (index of intestinal barrier function). We speculated that dietary fermentable carbohydrates including oligosaccharides commonly elevate colonic ALP and gene expression as well as increase mucin secretion and microbial fermentation. To test this hypothesis, male Sprague-Dawley rats were fed a diet containing 30 % lard with or without 4 % fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), raffinose (RAF) and lactulose (LAC), which are non-digestible oligosaccharides or isomalto-oligosaccharides (IMOS; some digestible oligosaccharides) for 2 weeks. Colon ALP activity, the gene expression and gut luminal variables including mucins, organic acids and microbiota were measured. Colonic ALP was significantly elevated in the FOS, RAF and LAC groups, and a similar trend was observed in the GOS group. Colonic expression of intestinal alkaline phosphatase (IAP -I), an ALP gene, was significantly elevated in the FOS, GOS and RAF groups and tended to be increased in the LAC group. Dietary FOS, GOS, RAF and LAC significantly elevated faecal mucins, caecal n-butyrate and faecal ratio of Bifidobacterium spp. Dietary IMOS had no effect on colonic ALP, mucins, organic acids and microbiota. Colon ALP was correlated with mucins, caecal n-butyrate and faecal Bifidobacterium spp. This study demonstrated that non-digestible and fermentable oligosaccharides commonly elevate colonic ALP activity and the expression of IAP-I, with increasing mucins and microbial fermentation, which might be important for protection of gut epithelial homoeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app