Add like
Add dislike
Add to saved papers

Focal selective chemo-ablation of spinal cardiac afferent nerve by resiniferatoxin protects the heart from pressure overload-induced hypertrophy.

Resiniferatoxin (RTX), a selective transient receptor potential vanilloid 1 (TRPV1) receptor agonist, can eliminate TRPV1+ primary sensory afferents and blunt cardiac sympathetic afferent reflex for a relatively long period. The present study determined the effects of intrathecal RTX administration on transverse aortic constriction (TAC)-induced cardiac dysfunction and cardiac remodeling in rats. Five days before TAC, RTX (2 μg/10 μl) was injected intrathecally into the T2/T3 interspace of rats. Cardiac sympathetic nerve activities (CSNAs) and cardiac structure and function were determined eight weeks after TAC. Intrathecal RTX administration abolished TRPV1 expression in the dorsal horn and reduced over-activated CSNA in the TAC rat model. Hemodynamic analysis revealed that RTX reduced left ventricular end-diastolic pressure, indicating the improvement of cardiac compliance. Histologic analysis, real-time reverse transcription-polymerase chain reaction, and Western blots showed that RTX prevented TAC-induced cardiac hypertrophy, cardiac fibrosis, and cardiac apoptosis and reduced the expression of apoptotic proteins and myocardial mRNAs. In conclusion, these results demonstrate that focal chemo-ablation of TRPV1+ afferents in the spinal cord protects the heart from pressure overload-induced cardiac remodeling and cardiac dysfunction, which suggest a novel promising therapeutic method for cardiac hypertrophy and diastolic dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app