JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pharmacological Inhibition of Serine Palmitoyl Transferase and Sphingosine Kinase-1/-2 Inhibits Merkel Cell Carcinoma Cell Proliferation.

The majority of Merkel cell carcinoma, a highly aggressive neuroendocrine cancer of the skin, is associated with Merkel cell polyomavirus infection. Polyomavirus binding, internalization, and infection are mediated by glycosphingolipids. Besides receptor function, bioactive sphingolipids are increasingly recognized as potent regulators of several hallmarks of cancer. Merkel cell polyomavirus+ and Merkel cell polyomavirus- cells express serine palmitoyl transferase subunits and sphingosine kinase (SK) 1/2 mRNA. Induced expression of Merkel cell polyomavirus-large tumor antigen in human lung fibroblasts resulted in upregulation of SPTLC1-3 and SK 1/2 expression. Therefore, we exploited pharmacological inhibition of sphingolipid metabolism as an option to interfere with proliferation of Merkel cell polyomavirus+ Merkel cell carcinoma cell lines. We used myriocin (a serine palmitoyl transferase antagonist) and two SK inhibitors (SKI-II and ABC294640). In MKL-1 and WaGa cells myriocin decreased cellular ceramide, sphingomyelin, and sphingosine-1-phosphate content. SKI-II increased ceramide species but decreased sphingomyelin and sphingosine-1-phosphate concentrations. Aberrant sphingolipid homeostasis was associated with reduced cell viability, increased necrosis, procaspase-3 and PARP processing, caspase-3 activity, and decreased AKTS473 phosphorylation. Myriocin and SKI-II decreased tumor size and Ki-67 staining of xenografted MKL-1 and WaGa tumors on the chorioallantoic membrane. Our data suggest that pharmacological inhibition of sphingolipid synthesis could represent a potential therapeutic approach in Merkel cell carcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app