Add like
Add dislike
Add to saved papers

Assessment of the performance of blood glucose monitoring systems for monitoring dysglycaemia in neonatal patients.

Objective: To validate a three-step protocol that assesses the clinical risk associated with using blood glucose monitoring systems (BGMS) in neonates for the management of dysglycaemia.

Method: The three-step validation approach included confirmation of the accuracy of the reference method using National Institute of Standards and Technology (NIST) glucose standards, assessment of analytical risk performed on whole blood collected from paediatric patients routinely tested for glucose and a clinical risk assessment performed using heel stick capillary samples collected from 147 new-born babies and neonates admitted to intensive care. BGMS glucose measurements were compared with the NIST aligned laboratory reference method.

Results: The accuracy of the laboratory reference method was confirmed with the NIST standards. Specificity studies demonstrated that the accuracy of one of the BGMS was affected, particularly, in the hypoglycaemic range, by known interference factors including haematocrit, ascorbic acid, lactose, galactose, N-acetylcysteine and glutathione. The accuracy of the other BGMS was unaffected. The clinical performance of this BGMS in neonates met the system accuracy criteria of Clinical and Laboratory Standards Institute (CLSI) POCT 12-A3 standard for evaluating hospital BGMS with 95.1% of glucose measurements within±0.67 mmol/L for samples ≤5.55 mmol/L and 95.6% within±12.5% for samples>5.55 mmol/L.

Conclusions: This three-step validation protocol provides a challenging approach for determining the accuracy and reliability of BGMS for managing dysglycaemia in neonates. StatStrip BGMS achieved analytical and clinical performance criteria confirming its suitability for use in neonates. We advocate that this validation approach should be considered for performance evaluations of both BGMS and continuous glucose monitoring systems going forward.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app