Add like
Add dislike
Add to saved papers

Fully connected neural network for virtual monochromatic imaging in spectral computed tomography.

Spectral computed tomography (SCT) has advantages in multienergy material decomposition for material discrimination and quantitative image reconstruction. However, due to the nonideal physical effects of photon counting detectors, including charge sharing, pulse pileup and K -escape, it is difficult to obtain precise system models in practical SCT systems. Serious spectral distortion is unavoidable, which introduces error into the decomposition model and affects material decomposition accuracy. Recently, neural networks demonstrated great potential in image segmentation, object detection, natural language processing, etc. By adjusting the interconnection relationship among internal nodes, it provides a way to mine information from data. Considering the difficulty in modeling SCT system spectra and the superiority of data-driven characteristics of neural networks, we proposed a spectral information extraction method for virtual monochromatic attenuation maps using a simple fully connected neural network without knowing spectral information. In our method, virtual monochromatic linear attenuation coefficients can be obtained directly through our neural network, which could contribute to further material recognition. Our method also provides outstanding performance on denoising and artifacts suppression. It can be furnished for SCT systems with different settings of energy bins or thresholds. Various substances available can be used for training. The trained neural network has a good generalization ability according to our results. The testing mean square errors are about 1 × 10 - 05    cm - 2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app