Add like
Add dislike
Add to saved papers

Histopathological and functional changes in a single-dose model of combretastatin A4 disodium phosphate-induced myocardial damage in rats.

Cardiotoxicity is a concern in the development of microtubule-disassembling agents (MDAs) as vascular-disrupting agents of tumors. This study investigated cardiotoxicity in rats induced by a single-dose of combretastatin A4 disodium phosphate (CA4DP), an MDA and discussed the use of this rat model in nonclinical studies of MDAs. First, CA4DP (120 mg/kg) was administered to rats intravenously, and cardiac histopathology and blood biomarkers were examined after 0.5, 24, and 72 h. Next, CA4DP (120 mg/kg) was administered to rats intravenously, and the electrocardiography and echocardiography results were analyzed. The results showed that at 0.5 h after dosing, plasma creatine kinase (CK), CK-muscle/brain (CK-MB), and fatty acid binding protein 3 levels increased. At 24 h, lactate dehydrogenase (LDH)-1, CK, and CK-MB levels increased, and multifocal vacuolar degeneration of myocardial cells was observed in the apical inner layer. At 72 h, LDH-1 levels were increased, and multifocal myocardial necrosis was observed in the interventricular septum and inner layer of the apex of left ventricular wall. Furthermore, at 0.5 h, heart rate (HR), ejection fraction (EF), and cardiac output (CO) decreased. At 24 h, CO decreased. Finally, at 72 h, HR, EF, and CO decreased, and depression of the T-wave amplitude was observed. In conclusion, myocardial injury, bradycardia, and depressed cardiac function were induced in rats by a single-dose of CA4DP. The lesion distribution and electrocardiographic features suggested that myocardial injury was induced by ischemia. These findings are similar to MDA-induced cardiotoxicity in humans, and this rat model will prove useful in studies of the cardiotoxicity in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app