Add like
Add dislike
Add to saved papers

QSPR modelling for prediction of glass transition temperature of diverse polymers.

The glass transition temperature is a vital property of polymers with a direct impact on their stability. In the present study, we built quantitative structure-property relationship models for the prediction of the glass transition temperatures of polymers using a data set of 206 diverse polymers. Various 2D molecular descriptors were computed from the single repeating units of polymers. We derived five models from different combinations of six descriptors in each case by employing the double cross-validation technique followed by partial least squares regression. The selected models were subsequently validated by methods such as cross-validation, external validation using test set compounds, the Y-randomization (Y-scrambling) test and an applicability domain study of the developed models. All of the models have statistically significant metric values such as r2 ranging from 0.713-0.759, Q2 ranging from 0.662-0.724 and [Formula: see text] ranging 0.702-0.805. Finally, a comparison was made with recently published models, though the previous models were based on a much smaller data set with limited diversity. We also used a true external set to demonstrate the performance of our developed models, which may be used for the prediction and design of novel polymers prior to their synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app