Add like
Add dislike
Add to saved papers

Development of near infrared spectroscopic calibration models for in-line determination of low drug concentration, bulk density, and relative specific void volume within a feed frame.

This study describes the development of a near infrared (NIR) calibration model for real time determination of drug concentration, powder density, and porosity or relative specific void volume (RSVV) of 3.00%w/w acetaminophen blends within a feed frame. The NIR calibration model was developed from 1.50 to 4.50%w/w of acetaminophen, using a high variability of major excipients (from 12.92 to 81.95%w/w) which facilitates the prediction of powder density and RSVV based on near infrared calibration spectra. The model using second derivative as spectral preprocessing explained the changes related to acetaminophen concentration in the first latent variable. The second latent variable was related to changes in concentration of microcrystalline cellulose and lactose in the powder blends. NIR calibrations were also developed based on the bulk density and RSVV of the powder blends using the same design as the API model, due to the physical properties of the particles and their effects on the NIR spectra. The RSVV was predicted for the independent set blends with an RSEP(%) below 4% with a significantly low bias (0.04 cm3 /g) from reference values of 1.33 to 1.58 cm3 /g. The bulk density model also exhibited excellent predictions with RSEP(%) below 2.6% and significantly low bias (0.01 g/cm3 ) from reference values of 0.45 to 0.51 g/cm3 . The excellent results obtained show the potential of near infrared spectroscopic measurements within the feed frame for a Process Analytical Technology method to control the critical properties such as tablet mass, hardness and dissolution in batch and continuous manufacturing processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app