Add like
Add dislike
Add to saved papers

Low-level thiocyanate concentrations impact on iron oxidation activity and growth of Leptospirillum ferriphilum through inhibition and adaptation.

Research in Microbiology 2018 November 3
Leptospirillum ferriphilum is the dominant iron-oxidising bacterium in traditional microbial communities utilised in bioprocesses for gold recovery from sulfidic minerals. Ferrous iron oxidation activity and growth of unadapted and thiocyanate-adapted L. ferriphilum HT was studied in batch culture across increasing thiocyanate (SCN- ) concentrations in the range 0-2 mg/L to assess the feasibility of recycling remediated cyanidation wastewaters. Thiocyanate concentrations of 1 mg/L and 1.4 mg/L induced an inhibitory effect in the unadapted culture wherein ferrous iron oxidation rate and cell growth were compromised. A substantial lag in the onset of ferrous iron oxidation occurred at concentrations above 0.5 mg/L SCN- , with no oxidation activity above 1.75 mg/L SCN- . The adapted culture, however, was uninhibited across the SCN- concentration range investigated and demonstrated a higher specific ferrous iron oxidation rate owing to reduced growth. It is postulated that SCN- exposure in the absence of adaptation induces osmotic stress. Moreover, upregulation of genes associated with the synthesis of osmo-protectants may be responsible for the preservation of activity observed in the adapted culture. As L. ferriphilum is dominant within the biooxidation tank community, evidence of sustained iron oxidation activity at low-level SCN- concentrations affirms the potential of recycling bioremediated cyanidation wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app