Add like
Add dislike
Add to saved papers

Predicting live birth by combining cleavage and blastocyst-stage time-lapse variables using a hierarchical and a data mining-based statistical model.

Reproductive Biology 2018 October 31
Prolonged embryo culture is increasingly used as a way of improving pregnancy rates, especially in the context of single embryo transfer. So far, only a handful of studies examined the relation between implantation potential and time-lapse parameters extracted from later stages (morula and blastocyst) of embryo development. For this retrospective study all 285 single vitrified-thawed blastocyst transfers (SVBT) from all consecutive unselected patients whose fertilized oocytes were submitted to time-lapse monitoring (TLM) from a two-year cohort were analysed. Two different statistical models were created; a hierarchical one including the two strongest live birth (LB) predictors (t2 and texpB2 ) and a more complex model based on principal component analysis (PCA) and logistic regression methods. The first, four-category, hierarchical model effectively distinguished between blastocysts of increasing LB rates (8, 30, 40, 53%). For the second data-mining model quartiles of the created Sc parameter had increasing LB rates (12, 19, 40, 49%). AUC values were comparable for both models (0.723, 95CI%:0.66-0.79 versus 0.717, 95CI%:0.65-0.78). The combination of cleavage- and blastocyst-stage variables through hierarchical or data mining-based algorithms was used successfully to predict live birth. However, due to the lack of internal / external validation the predictive capacities of this model could differ largely in different datasets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app