Add like
Add dislike
Add to saved papers

Modulation of gastric acid secretion by cannabinoids in rats.

The current study aimed to evaluate the role of cannabinoid receptors in the regulation of gastric acid secretion and oxidative stress in gastric mucosa. To fulfill this aim, gastric acid secretion stimulated with histamine (5 mg/kg, subcutaneous [SC]), 2-deoxy- d-glucose (D-G) (200 mg/kg, intravenous) or -carbachol (4 μg/kg, SC) in the 4-hour pylorus-ligated rats. The CB1R agonist ( N-arachidonoyl dopamine, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and carbachol but not in histamine, reduced pepsin content, and increased mucin secretion. Furthermore, it decreased malondialdehyde (MDA) and nitric oxide (NO) contents with an increase in glutathione (GSH) and paraoxonase 1 (PON-1). Meanwhile, CB2R antagonist (AM630, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and reduced MDA and NO contents with an increase in GSH and PON-1. Meanwhile, CB1R antagonist rimonabant or CB2R agonist GW 405833 had no effect on stimulated gastric acid secretion. Therefore, both CB1R agonist and CB2R antagonist may exert antisecretory and antioxidant potential in the stomach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app